100 Years of Chemistry 2024

Celebration of Achievements of Indian Chemical Industries

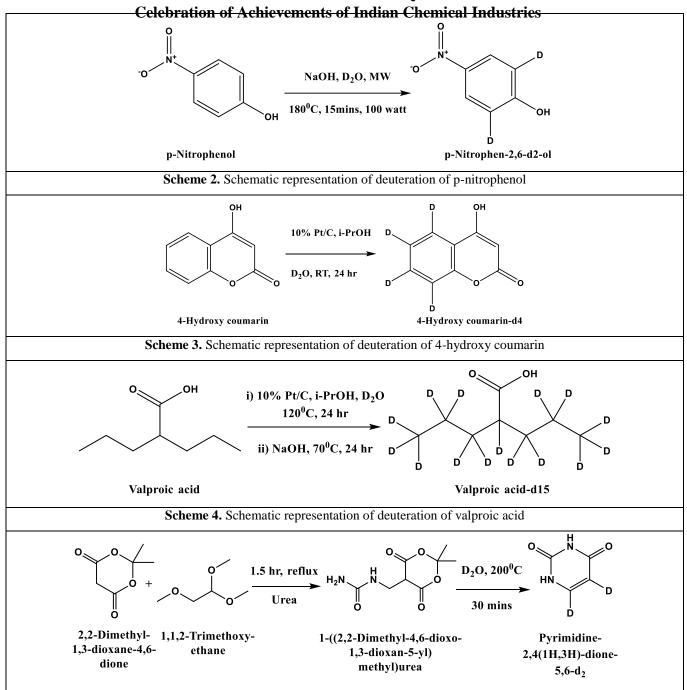
January 28-29, 2025, Nehru Centre, Mumbai

Deuterium Labelled Compounds by H–D Exchange Using Heavy Water for Improving Pharmacokinetics

Nakashe Siddhi¹, Dr. Padmanabhan D.², Dr. Ambre Premlata^{1*}

^{1, 1*}Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai- 400 098.
²Quality Control-Radiopharmaceuticals, Board of Radiation and Isotope Technology. BRIT/BARC Vashi Complex, Sector 20 Vashi, Navi Mumbai- 400 703.

¹siddhi.nakashe@bcp.edu.in, ²gompad@rediffmail.com, ^{1*}premlata.ambre@bcp.edu.in


1. Introduction:

Medicinal chemists use bioisosterism to enhance small-molecule drugs by substituting substructures while maintaining biological activity [1]. Replacing hydrogen with deuterium, a stable isotope, improves metabolic stability and impacts drug efficacy and safety beyond pharmacokinetics (PK) [2]. The FDA-approved deutetrabenazine (2017) demonstrated superior PK properties over tetrabenazine, allowing lower doses and reduced frequency. Deuterium chemistry, primarily through Hydrogen/Deuterium (H/D) exchange, leverages the C-D bond's 6–10 times greater stability, resulting in a kinetic isotope effect (KIE) that optimizes dosing regimens [3].

2. Material and Methods:

We developed efficient deuteration techniques for various scaffolds, biomolecules, and pharmaceuticals using heavy water (D₂O) with heterogeneous catalysts like Pd/C, Pt/C, Ru/C, Rh/C, and NaBD₄. Reactions were performed under thermal or microwave-assisted conditions in an inert nitrogen atmosphere. Deuterium-labeled products were confirmed via LC-MS and ¹H-NMR. Synthesized compounds such as phenol-d₃, p-nitrophenol-d₂, 4-hydroxycoumarin-d₃, valproic acid-d₁₀, chalcone-d₁, and uracil-d₁ demonstrate improved metabolic stability. Enhancing their potential utility in various applications. The following schemes were employed for conducting the deuteration reactions.

100 Years of Chemistry 2024

3. Significant Results and Discussion

In this project, we synthesized deuterium-labeled compounds using both conventional catalytic methods (Pd/C, Pt/C, Ru/C, Rh/C) and microwave-assisted synthesis without catalysts. The microwave method eliminated the need for catalysts and significantly reduced reaction time. Mass and ¹H-NMR analysis confirmed successful hydrogen-to-deuterium conversion with D₂O as the deuteration source, achieving a maximum isotopic distribution of 97.37% for d₂ at the ortho position of p-nitrophenol via the microwave method. This approach effectively facilitated aromatic substitution reactions. The developed schemes achieved isotopic purities of phenol-d₃ (80%), p-nitrophenol-d₂ (97%), 4-hydroxycoumarin-d₃ (49%), valproic acid-d₁₀ (53%), chalcone-d₁ (37%), and uracil-d₁ (49%).

Scheme 5. Schematic representation of synthesis of deuterated uracil

100 Years of Chemistry 2024

Celebration of Achievements of Indian Chemical Industries

Table 1. % Deuterium incorporation in synthesized deuterated molecules

Deuterated Compounds	% D Incorporation										
	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
Phenol	-	-	20.27	79.72	NA	NA	NA	NA	NA	NA	NA
p-Nitrophenol	-	2.61	97.37	0.02	NA	NA	NA	NA	NA	NA	NA
4-Hydroxy-coumarin	8.71	5.6	4.81	48.60	32.12	NA	NA	NA	NA	NA	NA
Valproic acid	29.1	-	1.52	-	-	-	-	3.52	2.8	-	52.67
Chalcone	37.05	37.38	25.56	NA	NA	NA	NA	NA	NA	NA	NA
Uracil	39.33	48.95	11.71	NA	NA	NA	NA	NA	NA	NA	NA

4. Conclusion:

We developed efficient deuteration techniques for medicinal scaffolds, biomolecules, and pharmaceuticals, achieving superior %D incorporation with the microwave method. Deuterium-labeled molecules, confirmed by LC-MS and ¹H-NMR, can serve as biomarkers or stable deuterium switches. The microwave method enabled up to 97.37% incorporation and demonstrated a proof of concept for targeting aromatic and aliphatic metabolic soft spots in drug development.

References:

- [1] Di Martino, R., Maxwell, B. & Pirali, T. Nature Review Drug Discovery 2023, 22, 562-584.
- [2] Harbeson, S. & Tung, R. Med. Chem. News 2014, 24(2), 8–22.
- [3] Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. Journal of medicinal chemistry 2019, 62(11), 5276–5297.